

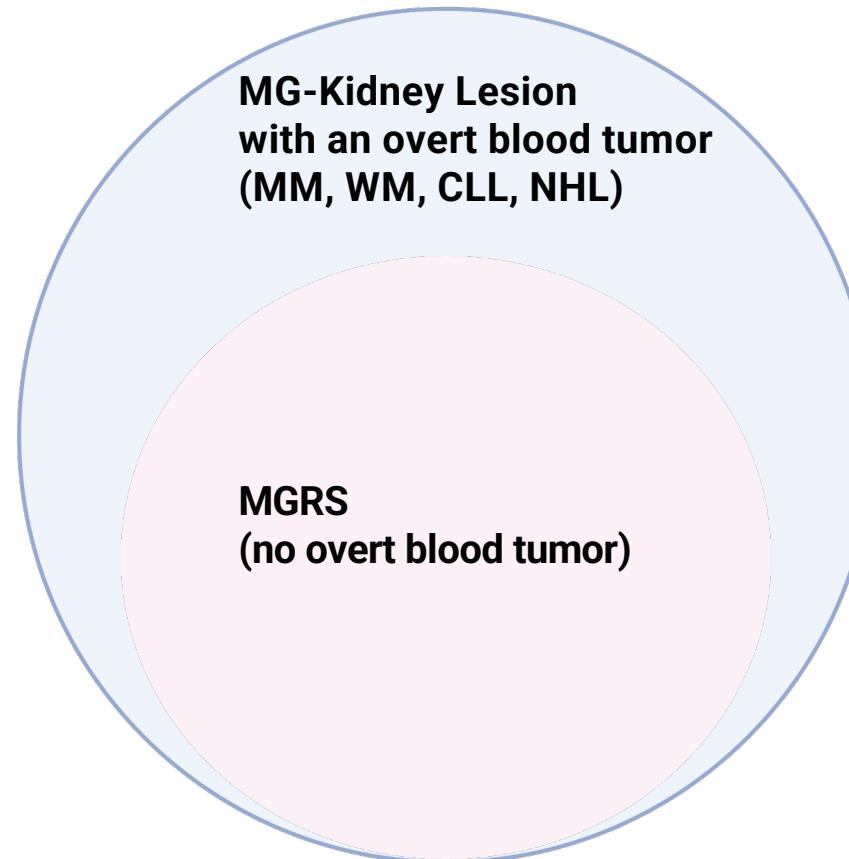
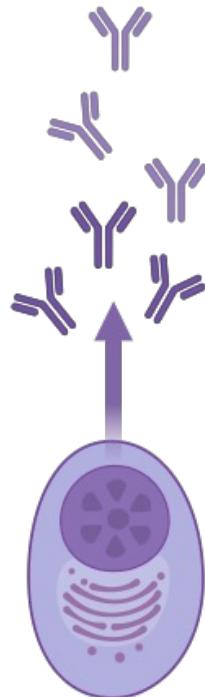
I “LINFOMI INDOLENTI”

Milano, Best Western Hotel Madison
26-27 gennaio 2026

Nefropatie Correlate a Gammopatia Monoclonale

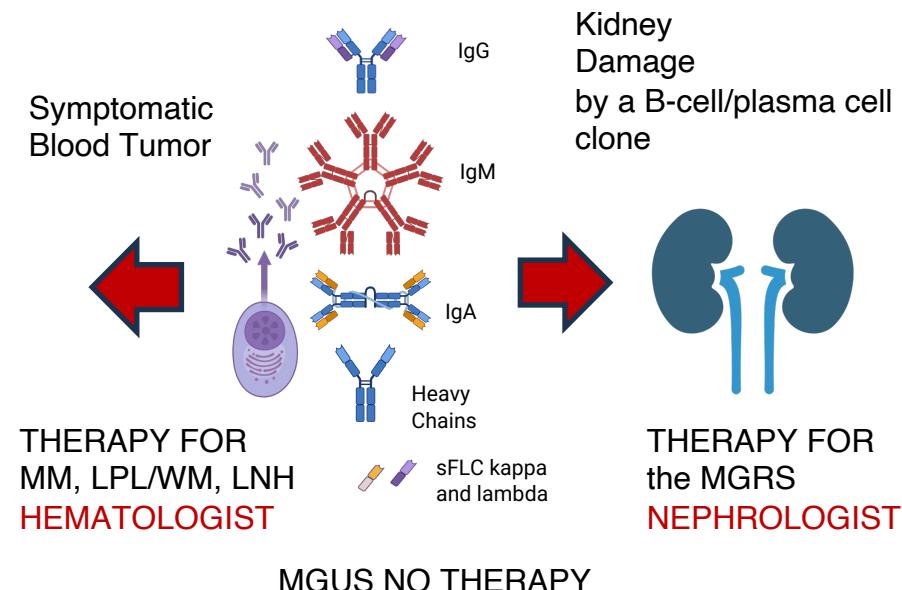
Francesco Piazza

Dipartimento di Medicina -Università degli Studi di Padova

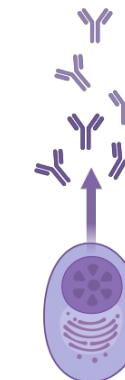
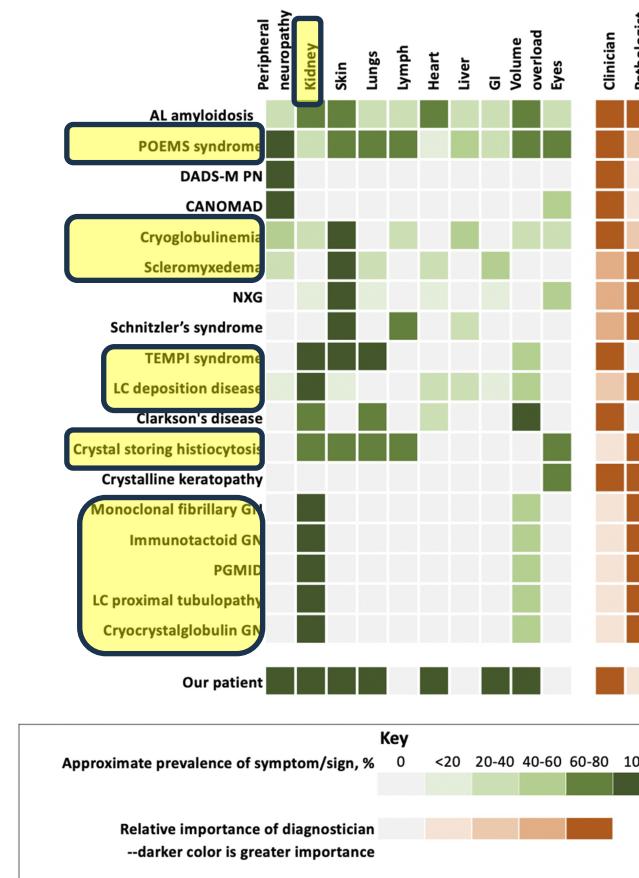


UOC di Ematologia-Azienda Ospedale Università Padova

Disclosures of Francesco Piazza

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie			+			+	+
Roche			+			+	+
Kite Gilead	+		+			+	+
Takeda							
Janssen			+			+	+
Beigene							+
Incyte			+			+	+


MG-Kidney Lesion

Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant



Nelson Leung,^{1,2} Frank Bridoux,³ Colin A. Hutchison,⁴ Samih H. Nasr,⁵ Paul Cockwell,⁴ Jean-Paul Fermand,⁶ Angela Dispenzieri,² Kevin W. Song,⁷ and Robert A. Kyle,² on behalf of the International Kidney and Monoclonal Gammopathy Research Group

- **2012** the term MGRS (Monoclonal Gammopathy of Renal Significance) is coined by the ***International Kidney and Monoclonal Gammopathy Research Group (IKMG)***
- **Plasma and B-cell clonal** proliferative disorders that produce a nephrotoxic monoclonal Ig.
- Renal injury by a **nephrotoxic MC** without signs/symptoms of a symptomatic blood tumor (no diagnostic criteria met).
- Aside from some cases of amyloid light chain (AL) amyloidosis, **the diagnosis of MGRS requires a kidney biopsy**.
- Who **asks for treatment** is the **NEPHROLOGIST**

Leung N, Bridoux F, Hutchison CA, et al; International Kidney and Monoclonal Gammopathy Research Group. Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. Blood. 2012;120(22):4292-4295.

Context – Definition: Monoclonal Gammopathy of Clinical Significance

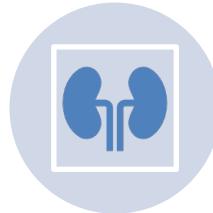
Renal Pathology Society/International Kidney and
Monoclonal Gammopathy Research Group consensus
on pathologic definitions and terminology of monoclonal
gammopathy-associated kidney lesions

Samih H. Nasr¹, Virginie Royal², Alejandro Best Rocha³, Maike Büttner-Herold⁴, Candice Roufosse⁵,
Frank Bridoux⁶, Wesam Ismail⁷, Lihong Bu⁸, Lynn D. Cornell⁹, Amélie Dendooven¹⁰, Rajib K. Gupta⁹,
Shigeo Hara¹⁰, Vincent Javaguie⁶, Nicolas Kozakowski¹¹, Satoru Kudose¹², Gonzalo P. Méndez¹³,
Kimberley Oliver¹⁴, Maria M. Picken¹⁵, Dominick Santorello¹², Sanjeev Sethi¹, Akira Shimizu¹⁶,
Geetika Singh¹⁷, M. Barry Stokes¹², Su-xia Wang¹⁸, Nelson Leung^{19,20}, Glen S. Markowitz¹² and
Vivette D. D'Agati¹²

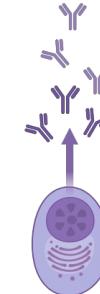
16 known MG-associated kidney lesions*.

- 22 variants of known lesions.

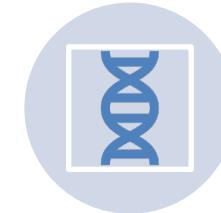
Furthermore:


- ≥2 MG-associated kidney **lesions can coexist** in the same biopsy.
- Careful examination by **light microscopy, IF, and electron microscopy**

*This term encompasses conditions characterized by either associated detectable:

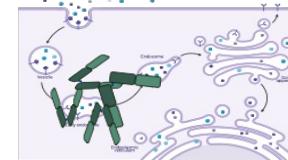

- 1) monoclonal Ig in the serum and/or urine, or
- 2) monotypic Ig deposits identified solely within the kidney.

Lesions (N=16)	Variants (N=22)
Light chain cast nephropathy	Amyloidogenic
Ig-related amyloidosis	AL; AHL; AH
Monoclonal Ig deposition disease	LCDD; LHCDD; HCDD; LCDD (or LHCDD) by IF only
Proliferative GN with monoclonal Ig deposits	IgG; IgM; IgA; LC-only
Monoclonal membranous nephropathy	
Monoclonal immunotactoid glomerulopathy	Intact Ig; LC-only
Cryoglobulinemic GN	Type I; Type II
Intracapillary monoclonal IgM glomerulopathy	
C3 glomerulopathy associated with MG	C3GN; DDD
Heavy chain fibrillary GN	
Light chain proximal tubulopathy	Crystalline; Non-crystalline
Light chain crystalline podocytopathy	
Light chain crystal-storing histiocytosis	Interstitial; Glomerular
Crystalglobulin-induced nephropathy	
Crystalline cryoglobulinemic GN type I	
Thrombotic microangiopathy associated with MG	

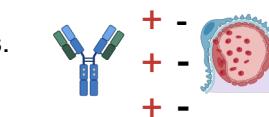

Monotypic and Monoclonal

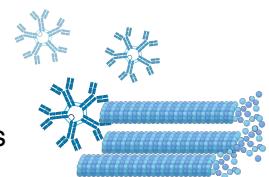
Monotypic: restricted heavy chain and/or light chain Ig staining in the kidney tissue.

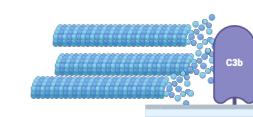
MGUS in the serum and/or urine may or may not* be detected

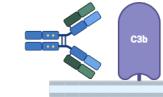

Monoclonal: can be determined upon demonstration of unique VL and VH sequences.

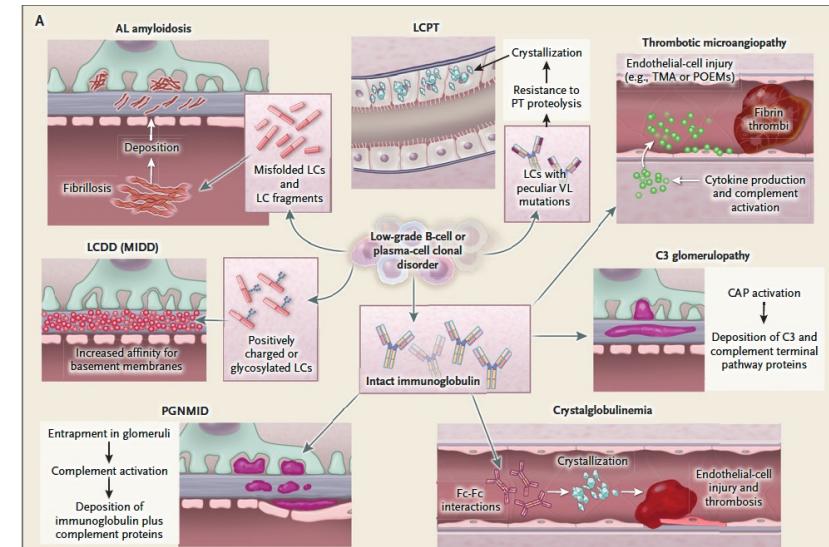
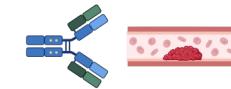
*As is the case for most (> 70%) cases of Proliferative GN with monoclonal Ig deposition – IgG and monoclonal membranous nephropathy

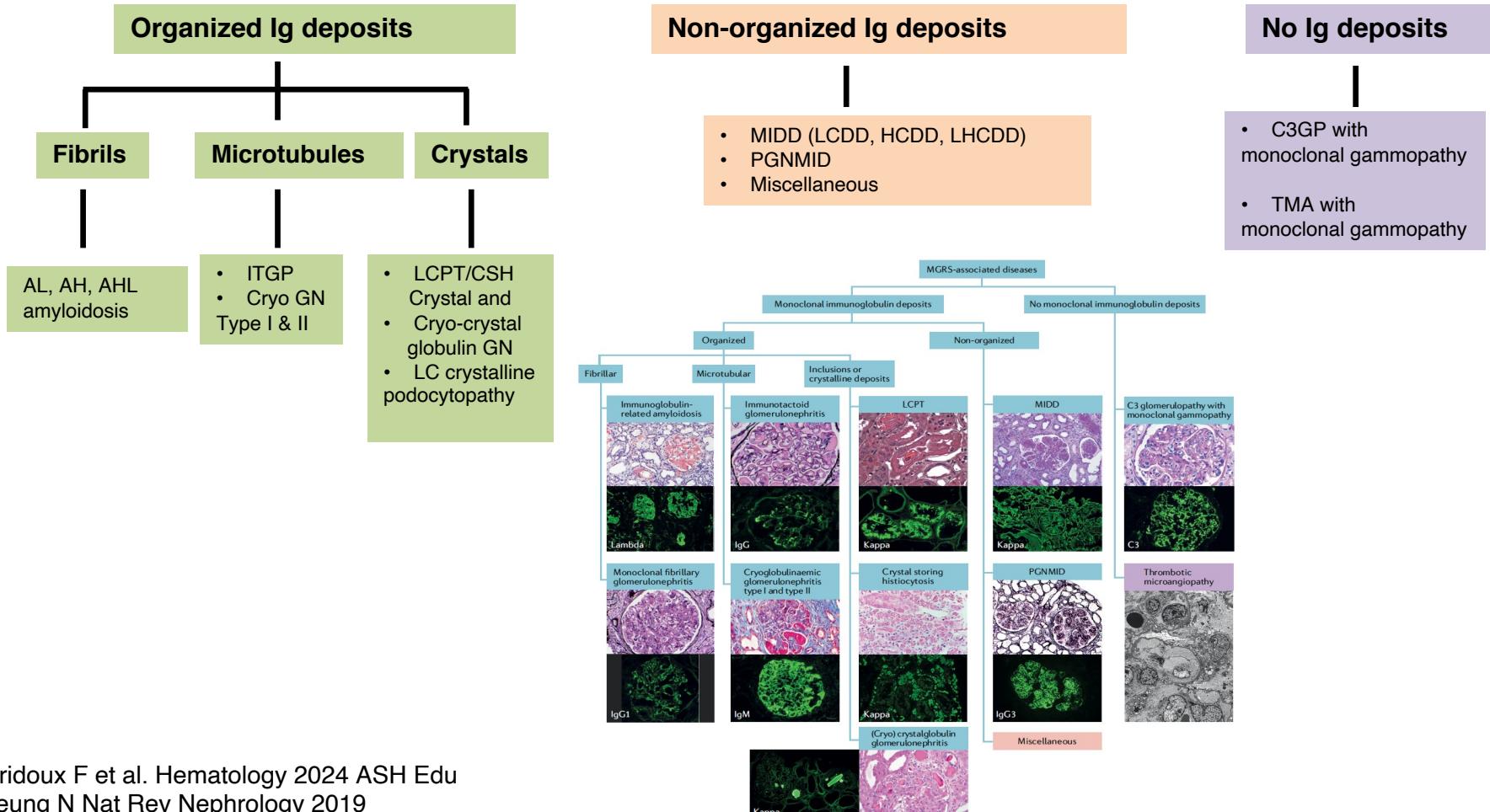

Misfolding of a fragment of mlg light chain >>> toxic **amyloid** fibers.


Ig light chain mutations in the V domain
 >>>resistance to proteolysis >>>accumulation in proximal tubular cells as crystals: **Ligh Chain Proximal Tubulopathy**.


Hydrophobic residues, abnormal **glycosylation**, **positive charge** in the V domain >>> aggregation and deposition in the mesangium and along the negatively charged glomerular and tubular basement membranes. Also, monoclonal free Heavy Chains may deposit if unable to associate with light chains due to deletion of the first constant domain: **Monoclonal Ig Deposition Disease**.


When **cryoglobulins** precipitate at cold temperature they form organized substructures (microtubules or crystals) >>> occlusion/inflammation of small arterioles and capillaries within glomeruli>>> **microtubular deposits**.



Non cryoglobulin microtubular deposits
 characteristic in **Immunotactoid Glomerulonephritis**. Classical complement pathway can also be activated >>> inflammation/endocapillary proliferation.



Activation of Complement
 Alternative pathway >>> **C3 deposition without mlg**.

Activation of thrombotic microangiopathy
 without mlg.

Acute renal failure

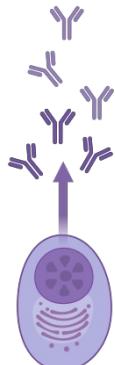
- Cast nephropathy
- TMA
- RPGN

Chronic kidney disease

Nephrotic syndrome

- Amyloidosis
- MIDD

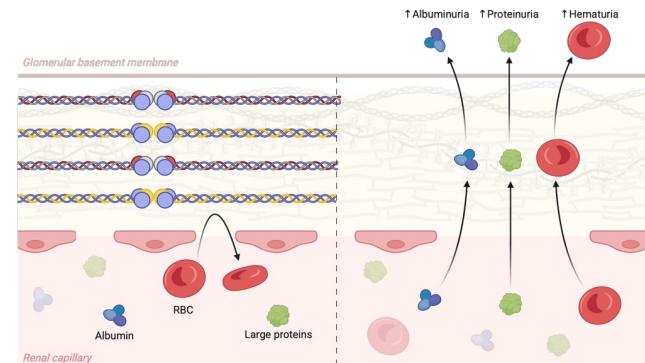
Nephritic-Nephrotic syndrome RPGN

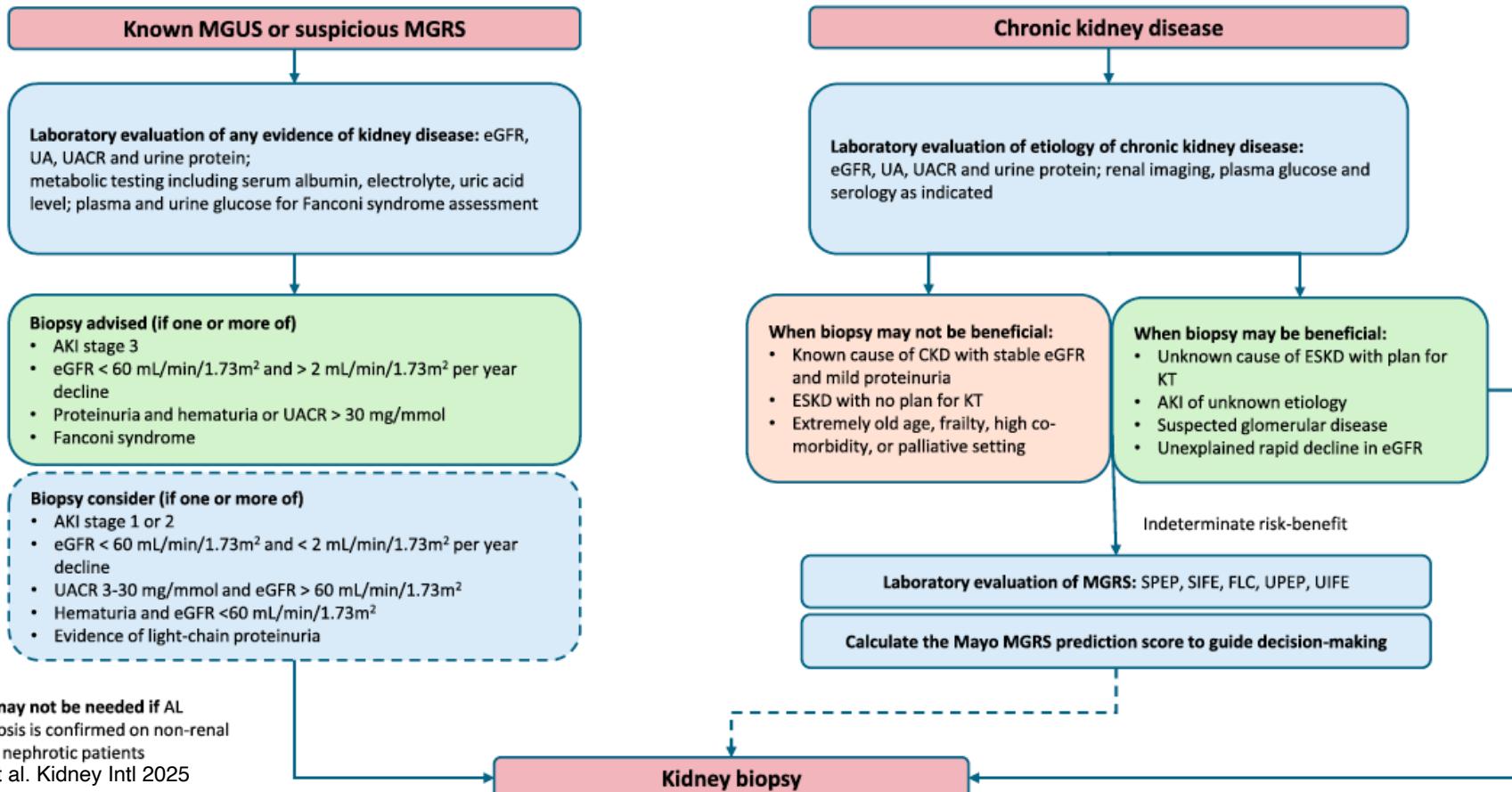

- PGNMID
- Cryoglobulinaemic GN
- C3-glomerulopathy
- Immunotactoid glomerulopathy

Proteinuria progressive CKD

- MIDD
- Light chain proximal tubulopathy
- Amyloidosis
- Cristal storing histiocytosis
- TMA
- Other

Challenges in MGRS management

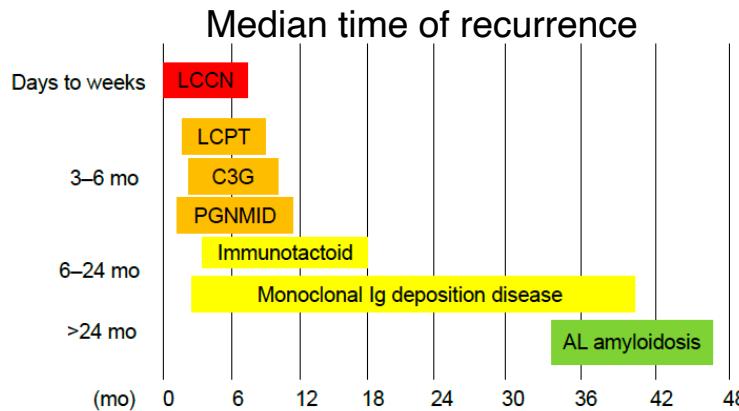

- The **mean age of patients with MGRS exceeds 60 years.**
 - chronic kidney disease (CKD) and MGUS are prevalent in an **elderly** population.
 - Diagnosing MGRS is thus like **searching for the proverbial needle in a haystack.**
 - **Avoid underdiagnosis** (missing MGRS as a treatable disease)
 - **Limiting costs** (unnecessary diagnostic tests) and **without causing harm** (unnecessary diagnostic procedures such as kidney biopsy).
- **Heterogeneity and complexity.**
- Need of **EM, ancillary techniques (IF, IF on paraffin** tissue after protease digestion, **mass spectrometry, immunoelectron microscopy**).
- Many MGRS lesions (aside from AL amyloidosis and LCDD) are likely **underdiagnosed** >>> a substantial fraction of patients may not receive appropriate therapies
- ***Not all patients who have monoclonal gammopathy (MG) and chronic kidney disease (CKD) have MGRS, and the 2 may be present in a patient without direct correlation.***



MGUS >> MGRS?

- serum creatinine
- estimated-glomerular filtration rate (eGFR)
- urinalysis for microscopic hematuria - proteinuria
- 24 hour urine protein

- **Microscopic hematuria**
 - glomerulonephritis (especially if + proteinuria)
- **Albumin to creatinine ratio (ACR)**
 - If ACR > 30 mg/mmol + MGUS
- **Rapid deterioration of kidney function**
 - (e.g. sGFR reduction of > 25% in 12 months)


- Autologous Stem Cell Transplant (ASCT) should be considered in selected cases:
 - AL amyloidosis
 - PGNMID, C3 GN
- In End-stage Kidney Disease (CKD stage 3b-5; eGFR \leq 20 ml/min/1.73m²) clone-directed therapy should not be initiated (only supportive therapy). Therapy only if other systemic involvement is present or in cases with planned kidney transplant.

Management recommendations for kidney transplantation in patients with plasma cell dyscrasias

Naoka Murakami¹, Christopher D. Blossey^{2,3}, Allison B. Webber⁴, Gaurav Gupta⁵, Neeraj Singh⁶, Samhita Boppana⁶, Samip Master⁷, Raviprasenna Parasuraman⁸, Erica L. Campagnaro⁹, Anuja Java¹, Ben Sprangers^{10,11}, Bhavna Bhasin-Chhabra², Erik Lum¹³, Diala Khirfan¹⁴, Mariam P. Alexander¹⁵, Miklos Z. Molnar¹⁶, Brian Benes¹⁷, Ajay Kumar Thakur¹⁸, Naresh Bumma¹⁹, Sabine Karam^{20,21}, Malin Hultcrantz²², Frank Bridoux²³, Vaishali Sanchorawala²⁴, Nelson Leung²⁵ and Heather Landau²²

- Therapeutic option re-evaluated given the improved overall and disease outcomes in MM.
- Eligible patients without severe extrarenal disease.
- Best results if hematologic CR prior to transplant.
- Elevated rate of post-transplant relapse >> post transplant consolidation therapy.

IMWG (International Myeloma Working Group)

- MGRS with tubular injury

Box 1. Hematologic Response Criteria for Multiple Myeloma

Stringent complete response

- Complete response (see below) plus normal sFLC ratio and absence of clonal plasma cells on bone marrow biopsy

Complete response

- Negative sIgE and uIgE, disappearance of plasmacytomas, <5% plasma cells on bone marrow biopsy

Very good partial response

- SPEP and UPEP negative but monoclonal protein detectable by sIgE or uIgE or >90% reduction in serum monoclonal paraprotein with urine monoclonal protein < 100 mg/24 h

Partial response

- >50% reduction in serum monoclonal protein, >90% reduction in 24-h urine monoclonal protein (or to <200 mg/24 h), >50% reduction in baseline plasmacytoma size (if present)
- If monoclonal protein is unmeasurable, >50% reduction in difference between involved and uninvolved FLC levels
- If FLC not measurable, >50% reduction in plasma cells in bone marrow from baseline (requires >30% plasma cells at baseline)

Minimal response

- 25%-49% reduction in serum monoclonal protein, 50%-89% reduction in 24-h monoclonal protein in urine
- 25%-49% reduction in size of plasmacytomas (if present)

Stable disease

- Does not meet criteria for any of response pattern above or for progressive disease

Progressive disease

- 25% increase from lowest response value in serum monoclonal protein (increase > 0.5 g/dL) and/or urine monoclonal protein (increase > 200 mg/24 h)

Note: Based on information in Kumar et al (International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. *Lancet Oncol.* 2016;17:e328-e346).

Abbreviations: sFLC, serum free light chain; sIgE, serum immunofixation; SPEP, serum protein electrophoresis; uIgE, urine immunofixation; UPEP, urine protein electrophoresis.

Renal Response

Table 1. Criteria for Renal and Hematologic Responses

Renal Response	International Society of Amyloidosis (Gertz et al. ³⁰ 2005)	International Myeloma Workshop (Dimopoulos et al. ³¹ 2010)
≥50% decrease (≥0.5 g/d) of 24-h urine protein (urine protein must be >0.5 g/d pretreatment); Scr and creatinine clearance (or eGFR) must not decrease by 25% over baseline	Complete renal response: increase in baseline eGFR from <50 to ≥60 mL/min/1.73 m ² Partial renal response: increase in baseline eGFR from <15 to 30-59 mL/min/1.73 m ² Renal minor response: increase in baseline eGFR from <15 to 15-29 mL/min/1.73 m ² , or if baseline eGFR was 15-29, then increase to 30-59 mL/min/1.73 m ²	

ISA (International Society of Amyloidosis)

- MGRS with glomerular injury with proteinuria
- Valid also for assessing renal response

Box 2. Hematologic Response Criteria for AL Amyloidosis

Complete response

- Negative SPEP, sIgE, UPEP, uIgE, and normal sFLC ratio

Very good partial response

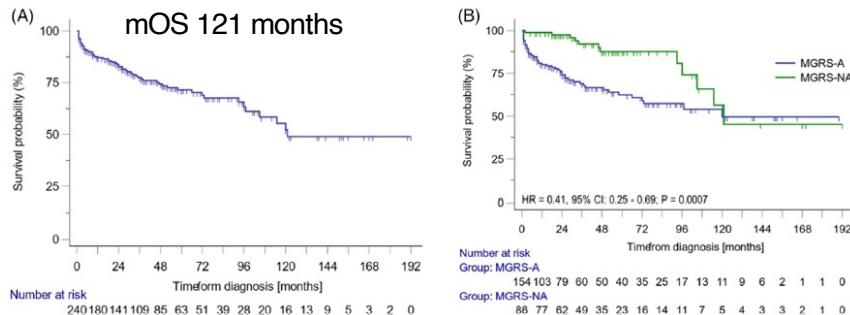
- dFLC < 40 mg/L

Partial response

- Decrease in dFLC by >50% (in patients with baseline dFLC > 50 mg/L)

No response

- Improvement in paraprotein levels but less than partial response



Progression

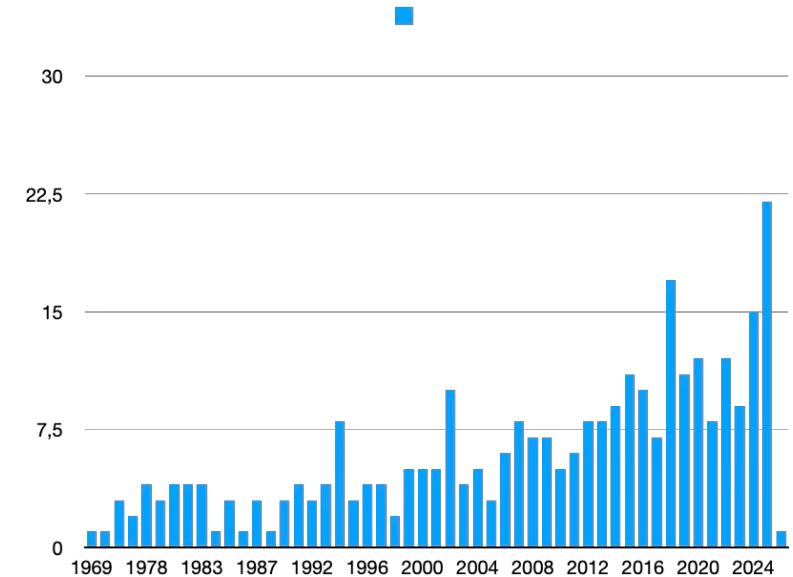
- From complete response: any detectable monoclonal protein or abnormal sFLC ratio (involved light chain must be at least double the normal range)
- From partial response: 50% increase in serum monoclonal protein to >5 g/dL or 5% increase in urine monoclonal protein to >200 mg/d
- At any time: sFLC increase of 50% to >100 mg/L

Note: Based on information in Palladini et al (New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. *J Clin Oncol.* 2012;30(36):4541-4549).

Abbreviations: dFLC, difference in free light chains (involved minus uninvolved light chain in serum); sFLC, serum free light chain; sIgE, serum immunofixation; SPEP, serum protein electrophoresis; uIgE, urine immunofixation; UPEP, urine protein electrophoresis.

Monoclonal gammopathy of renal significance (MGRS): Real-world data on outcomes and prognostic factors

PROGNOSTIC FACTORS:


- $\beta 2$ Microglobulin levels > 5.5 mg/L
- Age > 65 yrs
- Preexisting renal function > 177 umol/L
- Dialysis

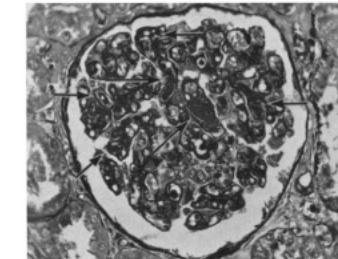
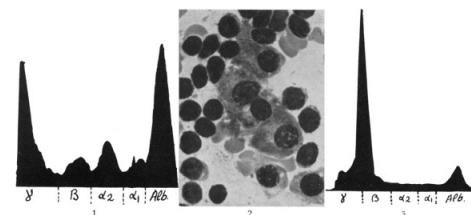
Renal involvement in LPL/WM

- Relatively **rare**
- **Underrecognized** despite awareness
- Mechanisms **beyond MGRS**

>>MG-Kidney Lesions

- Clinically **impactful**
- Scarce literature

Pubmed articles for
«WM or Lymphoplasmocytic Lymphoma
And renal damage, dysfunction and MGRS»



Macroglobulinemic Nephropathy*

Acute Renal Failure in Macroglobulinemia of Waldenström

I. ARGANI, M.D.† and G. F. KIPKIE, M.D.

Kingston, Ontario

- First report of WM-related kidney injury
- Severe dehydration >>> AKI
- Biopsy revealed proteinaceous material in the glomerular capillaries

PATHOLOGY OF THE KIDNEY IN WALDENSTRÖM'S MACROGLOBULINEMIA*

Study of Sixteen Cases

N = 16

5 biopsied

11 Autopsies

LILIANE MOREL-MAROGER, M.D., ANDRÉ BASCH, M.D., FRANÇOISE DANON, M.D.,
PIERRE VERROUST, M.D., AND GABRIEL RICHET, M.D.

With the Technical Assistance of Anne-Marie Bouteiller

Table 2. Histologic Observations.

CASE NO.	SOURCE OF TISSUE	GLOMERULAR LESION	IMMUNOFLUORESCENCE	INTERSTITIAL INFILTRATION
1	Autopsy	Amyloidosis, very focal	*	—
2	Autopsy	Amyloidosis	*	+
3	Biopsy	Amyloidosis, very focal	No fixation	—
4	Biopsy & autopsy	No detectable lesion	Circulating IgM	—
5	Autopsy	No detectable lesion	*	+ (PAS-positive cells; reticular cells).
6	Autopsy	No detectable lesion	*	—
7	Autopsy	No detectable lesion	*	+++
8	Autopsy	No detectable lesion	*	++ tophus
9	Autopsy	No detectable lesion	*	+ (PAS-positive cells; intranuclear inclusions).
10	Biopsy	Endomembranous deposits	IgM +	+ (PAS-positive cells)
11	Autopsy	Rare deposits in glomerular capillaries & arterioles	*	++
12	Autopsy	Large thrombi in glomeruli & arterioles	*	+
13	Autopsy	Thrombi & deposits in glomerular capillaries & arterioles	*	+
14	Autopsy	Large thrombi + endomembranous deposits in glomerular capillaries, arterioles & tubules [†]	IgM +	+
15	Biopsy & autopsy	Thrombi + endomembranous deposits in glomerular capillaries [†]	IgM +	—
16	Biopsy	No detectable lesion	No fixation	—

*Not done.

[†]Slight endothelial proliferation.

Main retrospective studies:

- 1) American-european series (*Vos et Al, BJH 2016*) of 1391 patients with WM of which 44 with demonstrated biopsy-proven disease localization (3,16%).
- 2) Mayo Clinic case series (*Higgins et Al, Clin J Am Soc Nephrol 2018*) of 1363 WM patients of which 42 positive for renal localization of disease (3,08%).
- 3) Other minor series (*Chauvet et al, Nie et Al..*).

Study	N°patients	N°renal biopsies	Inclusion criteria	Follow up time	Findings
Vos et Al, BJH 2016	1391	44	<ul style="list-style-type: none"> - ClCr < 60 ml/min and positive proteinuria - Positive kidney biopsy 	1999-2015	<ul style="list-style-type: none"> - Clinical and histopathological description
Higgins et Al, Clin J Am Soc Nephrol 2018	1363	57	<ul style="list-style-type: none"> - serum monoclonal IgM - Positive bone marrow biopsy - Positive kidney biopsy 	1996-2015	<ul style="list-style-type: none"> - Clinical and histopathological description
Chauvet et al, Am J Kidney Dis 2015	35	35	<ul style="list-style-type: none"> - serum monoclonal IgM - ClCr < 60 and/or proteinuria >0.5g/24h - Positive kidney biopsy 	1992-2012	-

Renal disease related to Waldenström macroglobulinaemia: incidence, pathology and clinical outcomes

DANA FARBER STUDY

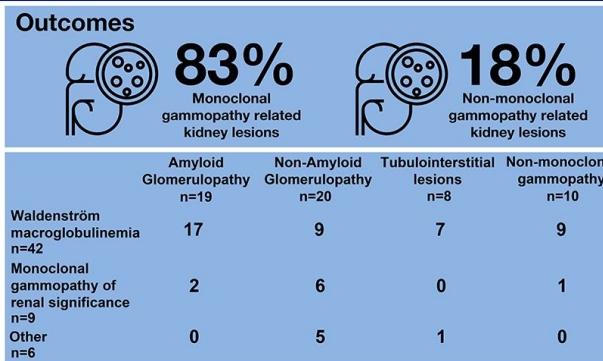
- 1391 pts with WM.
- 52 cases (kidney biopsy proven): 8/52 unrelated causes; 44/52 due to WM
- **Est. cumulative incidence: 5.1% at 15 year**

Five main histological patterns:

- ✓ **Amyloidosis 25%**
- ✓ **Monoclonal IgM DD/cryoglobulinemia 23%**
- ✓ **LPL infiltration 18%**
- ✓ **LCDD 9%**
- ✓ **LC cast nephropathy 9%**

Potentially related to LPL/WM:

- ✓ **Thrombotic microangiopathy 7%**
- ✓ Minimal change disease 5%
- ✓ Membranous nephropathy 2%
- ✓ Crystal storing disease 2%


- Check for unexplained renal insufficiency/nephrotic syndrome with biopsy
- Pro-active surveillance to start early treatment

STUDIO MAYO CLINIC

1) IgM+ 2) BM biopsy+ 3) Kidney biopsy +

What are the kidney manifestations in patients with Waldenström Macroglobulinemia?

Cohort
 57 kidney biopsies in patients with

 Waldenström macroglobulinemia and other IgM secreting B-cell lymphoproliferative disorders

Conclusions This study demonstrates a diverse variety of kidney lesions in patients with monoclonal IgM gammopathy.

Larissa Higgins, Samih Nasr, Samar Said, et al. Kidney Involvement of Patients with Waldenström Macroglobulinemia and other IgM Producing B-Cell Lymphoproliferative Disorders. doi: 10.2215/CJN13041117

Da: Higgins L et al. Clin J Am Soc Nephrol 13: 1037–1046, July, 2018

Four groups:

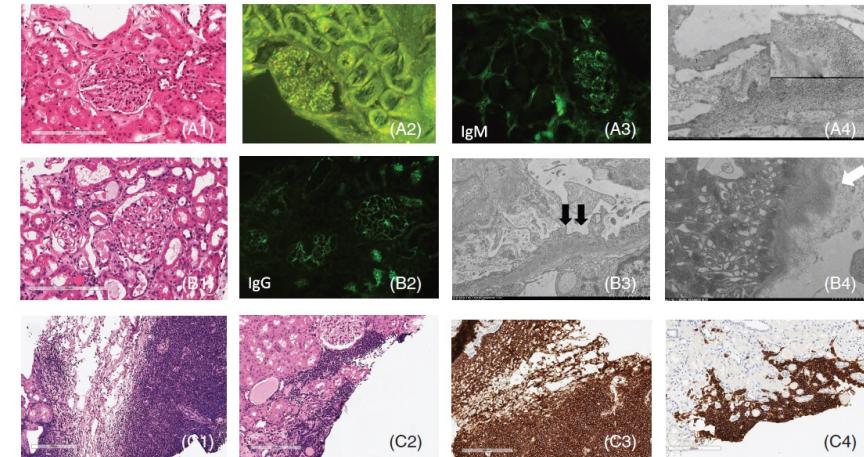
Table 1. Kidney lesions of patients with Waldenström macroglobulinemia and other IgM monoclonal gammopathy

Group 1: Amyloid Glomerulopathy, N=19	Group 2: Nonamyloid Glomerulopathy, N=20	Group 3: Tubulointerstitial Lesions, N=8	Group 4: Nonparaprotein-Related Lesions, N=10
Monoclonal light-chain amyloidosis (16)	Cryoglobulinemic GN (12)	Lymphoma infiltration (4)	Minimal change disease (2)
Monoclonal light- and heavy-chain amyloidosis (2)	Immunotactoid GN (2)	Light-chain cast nephropathy (2)	Acute tubular necrosis (2)
Monoclonal light- and heavy-chain amyloidosis with membranous deposits disease (2)	Intracapillary monoclonal deposits disease (2)	Lymphoma infiltration with light-chain cast nephropathy (1) ^a	Secondary FSGS (1)
Monoclonal light-chain amyloidosis with membranous nephropathy (1) ^a	Proliferative GN with monoclonal Ig deposits (1)	Lymphoma infiltration and ANCA-associated GN (1) ^a	FSGS (1)
Monoclonal IgG-associated membranous nephropathy (1)	Monoclonal IgG-associated membranous nephropathy (1)	Acute tubular necrosis and acute interstitial nephritis (1)	Diabetic nephropathy (1)
Light-chain deposition disease (1)	Light-chain deposition disease (1)	Immune complex-mediated proliferative GN (1)	Thrombotic microangiopathy (1)
Mesangial proliferative GN with minimal change disease and lymphoma infiltration (1) ^a	Mesangial proliferative GN with minimal change disease and lymphoma infiltration (1) ^a		

^aMore than one pathologic feature.

Da: Uppal NN et al . Nephrol Dial Transplant (2018) 1–9

Received: 23 October 2023 | Revised: 29 February 2024 | Accepted: 9 March 2024


DOI: 10.1002/cnr2.2062

CASE SERIES

Cancer Reports

When Waldenström macroglobulinemia hits the kidney: Description of a case series and management of a “rare in rare” scenario

Nicolò Danesin¹ | Greta Scapinello¹ | Dorella Del Prete² | Elena Naso² |
Tamara Berno¹ | Andrea Visentin¹ | Laura Bonaldi³ | Annalisa Martines³ |
Roberta Bertorelle³ | Fabrizio Vianello^{1,4} | Carmela Gurrieri¹ |
Renato Zambello^{1,4} | Chiara Castellani⁵ | Marny Fedrigo⁵ | Stefania Rizzo⁵ |
Annalisa Angelini⁵ | Livio Trentin¹ | Francesco Piazza^{1,4}

Casistica Ematologia Padova (2000-2025, n=11)

- Amiloidosi 4 (36.4%)
- Glomerulopatia 5 (45.4%)
- Tubulo-interstiziopatia 2 (18.1%)

Danesin N. et al. Cancer Rep. 2024

Renal involvement in LPL/WM: treatments and outcomes

	Chauvet S n=35	Vos J n= 44	Higgins n= 57
Alkylating	70%	29%	na
Rituximab	22.7%	85%	58%
Purine analogues	8%	6%	na
Proteasome Inhibitors	0%	50%	na
Others (including ASCT)	1%	2%	16%
ORR hem	33%-99%	64%	42.3%
ORR Ren	50%-62.5%	73%	42.3%

Main recent prospective clinical trials in testing efficacy of Bortezomib-based regimens, such as ECWM-1 (B-DRC vs DRC), EMN (BDR) or BTKi-based regimens (ASPEN, INNOVATE) generally have considered the presence of **renal dysfunction as an exclusion criterion** (CICr < 30 ml/min/1,73mq).

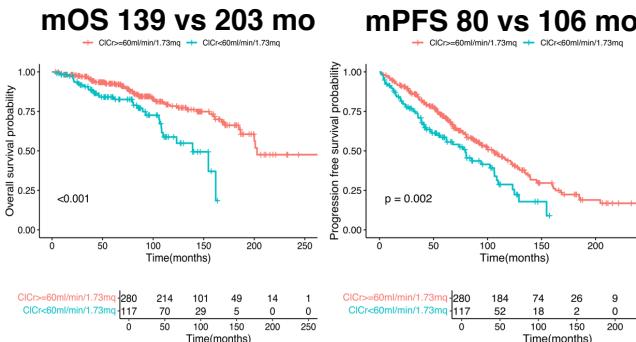
Trial	Phase	Arms	Eligibility	«Renal» exclusion criteria	Number of patients	Findings
ECWM-1 (JCO 2023)	3	B-DRC vs DRC	TN	Serum creatinine > 2 mg/dL	204	Higher CR/VGPR rate for B-DRC
EMN (Blood 2013)	2	BDR	TN	CICr < 30 ml/min...	59	Long lasting response in TN patients
INNOVATE (NEJM, 2018)	3	Ibrutinib-Rituximab vs Rituximab	R/R or TN	Biochemical values within protocol limits...	150	Higher PFS rate for Ibrutinib-Rituximab
ASPEN (Blood, 2020)	3	Zanubrutinib vs Ibrutinib	R/R after a prior line or TN unsuitable for CHT	Inadequate renal function...	201	Higher CR/VGPR rate for Zanubrutinib

Long title: Renal Dysfunction in Symptomatic Waldenström Macroglobulinemia: a Nationwide Italian Multicenter Study.

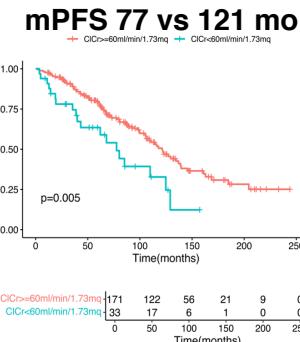
Authors: Nicolò Danesin¹, Francesco Autore², Anna Maria Frustaci³, Gianmarco Favrin¹⁸, Emanuele Cencini⁵, Alessandro Noto⁶, Irene Dogliotti¹⁹, Jacopo Olivieri⁷, Marcello Riva⁸, Isacco Ferrarini⁹, Anna Maria Barbui¹⁰, Sara Steffanoni¹¹, Dario Marino¹², Benedetta Puccini¹³, Piero Maria Stefani¹⁴, Rita Rizzi¹⁵, Michele Merli⁶, Angela Ferrari¹⁶, Stefano Luminari¹⁶, Carlo Visco⁹, Livio Trentin¹, Andrea Visentin¹, Annarita Conconi¹⁷, Simone Ferrero^{4,19}, Marzia Varettoni¹⁸, Alessandra Tedeschi³, Luca Laurenti², Francesco Piazza¹.

Median FU 95.4 mo

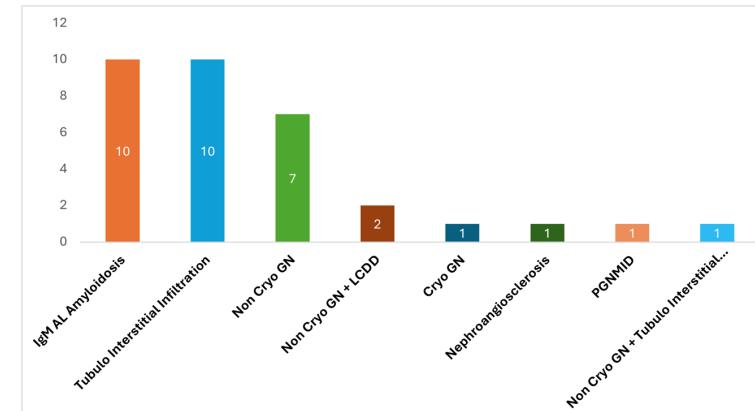
N=471 sWM; 402 study population



119/402 (29.6%) with eGFR < 60mL/min/1.73m²



33/119 (27.7%) renal biopsied


WHOLE COHORT

AGED < 70 YEARS

Distribution of renal histopathological patterns in biopsied sWM patients (n = 33, 27.7% of those with renal impairment)

NA-GN 33.4%

A-GN 30.3%

Tubulointerstitial 30.3%

Other

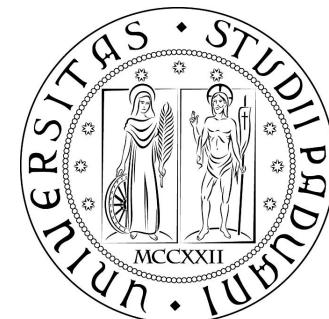
IgM/WM-related Kidney Lesions

- a) May be **underestimated**.
- b) The **prevailing renal lesions** are **glomerular**, both amyloidotic and non amyloidotic.
- c) A correct **diagnostic work up** should be refined.
- d) The **prognostic stratification** is unclear.
- e) The most appropriate **therapeutic approach** is still debated.

Renal Impairment in WM

- a) It should be assessed as a **possible expression of MGRS/WMKD** >>> biopsy.
- b) It **impacts survival outcomes** in young and elderly patients.
- c) It **responds well to CIT**, not enough data on novel modern treatments.

University of Padua - Department of Medicine
Padua University Hospital - Hematology
Head: Prof. Livio Trentin


Lymphoma Physicians
Dott.ssa Greta Scapinello
Dott. Nicolò Danesin (Resident)
Dott. Marco Carraro (Resident)

Nephrologists
Dott.ssa E. Naso
Dott.ssa D. De Giorgi
Prof.ssa D. Del Prete

Nephropathologists
Prof.ssa F. Angelini
Dott.ssa M. Fedrigo

Hematopathologist
Prof. Marco Pizzi

Thank You for Your Attention!

REGIONE DEL VENETO
Azienda Ospedale
Università Padova